✎✎✎✎
gaia_zurg
gaia_zurg
Be less curious about people and more curious about ideas.
Biotechnology describes the use of biological organisms to make products or to solve problems of importance to society. It is anticipated that biotechnology will provide solutions to emerging challenges facing humanity including food security, pest and disease management, quality of life as well as issues arising from climate change. This unit will provide you with an understanding of the fundamental principles that underpin biotechnology. Biotechnology is the area of research and development using biological and cellular systems to produce many kinds of products that are used in different applications during everyday household living, at research institutions/organizations, as well as in different biotechnological companies and industries. Some specific examples of products and applications in Biotechnology include the use of yeast for dough rising (leavening) during bread making, using yeast in the fermentation and production of alcohol, use of filamentous fungi to produce enzymes that hydrolyse woody biomass to fermentable sugars, use of enzymes in laundry detergents, use of bacteria or animal cell cultures to produce proteins/antibodies for diagnostic kits in disease monitoring and control, application of genetic manipulation, recombinant gene technology and biochemical pathway engineering to obtain better producing/performing microorganisms and animal cell cultures, drought/disease resistant and more nutritious plants, and much more. Biological scientists are currently turning to genomic and phylogenetic approaches to explore biological diversity, improve agricultural practices, develop better drugs, understand the genetic basis of disease and manage endangered or invasive species. This unit showcases variation in genomic structure and function across life. You will also be introduced to analytical tools for database mining, gene discovery and genome exploration, which will provide an understanding of how genes interact with each other and the environment. You are apply theoretical knowledge to develop advanced data analysis skills, carry out genetics work in a laboratory and use data from active research programs to evaluate and analyse genomic and phylogenetic datasets to solve problems in the biological sciences.
Biology is the study of living things. But what is “living”' Cells are considered the basic structural unit of life, existing in diverse forms from simple single-celled microbes to complex multicellular organisms such as plants and animals. Using collaborative approaches in workshops and the laboratory you will investigate the diverse nature of cells and consider how they are built and powered and how they interact and reproduce. You will use the concepts developed in this unit to discuss more complex questions such as “are viruses alive” and “can we synthesise life”'. The extensive use of biological evidence to identify victims and offenders as well as indicate attempts to control victims prior to abuse or attack has had a significant bearing on the course of law enforcement investigations, criminal court proceedings, and victim service providers. DNA and toxicology evidence have become a highly influential piece of the crime puzzle. You will be introduced to the concepts of DNA profiling and analytical toxicology and their applications in forensic case work. Develop the necessary skills for analysing and interpreting the DNA and toxicology evidences and be introduced to the basic concepts of forensic anthropology. This learning will be through the study of the theory, hands-on practices relevant to real life scenarios as well as training on the forensic interpretation of the evidence.
Biotechnology describes the use of biological organisms to make products or to solve problems of importance to society. It is anticipated that biotechnology will provide solutions to emerging challenges facing humanity including food security, pest and disease management, quality of life as well as issues arising from climate change. This unit will provide you with an understanding of the fundamental principles that underpin biotechnology. Biotechnology is the area of research and development using biological and cellular systems to produce many kinds of products that are used in different applications during everyday household living, at research institutions/organizations, as well as in different biotechnological companies and industries. Some specific examples of products and applications in Biotechnology include the use of yeast for dough rising (leavening) during bread making, using yeast in the fermentation and production of alcohol, use of filamentous fungi to produce enzymes that hydrolyse woody biomass to fermentable sugars, use of enzymes in laundry detergents, use of bacteria or animal cell cultures to produce proteins/antibodies for diagnostic kits in disease monitoring and control, application of genetic manipulation, recombinant gene technology and biochemical pathway engineering to obtain better producing/performing microorganisms and animal cell cultures, drought/disease resistant and more nutritious plants, and much more. Biological scientists are currently turning to genomic and phylogenetic approaches to explore biological diversity, improve agricultural practices, develop better drugs, understand the genetic basis of disease and manage endangered or invasive species. This unit showcases variation in genomic structure and function across life. You will also be introduced to analytical tools for database mining, gene discovery and genome exploration, which will provide an understanding of how genes interact with each other and the environment. You are apply theoretical knowledge to develop advanced data analysis skills, carry out genetics work in a laboratory and use data from active research programs to evaluate and analyse genomic and phylogenetic datasets to solve problems in the biological sciences.
Biology is the study of living things. But what is “living”' Cells are considered the basic structural unit of life, existing in diverse forms from simple single-celled microbes to complex multicellular organisms such as plants and animals. Using collaborative approaches in workshops and the laboratory you will investigate the diverse nature of cells and consider how they are built and powered and how they interact and reproduce. You will use the concepts developed in this unit to discuss more complex questions such as “are viruses alive” and “can we synthesise life”'. The extensive use of biological evidence to identify victims and offenders as well as indicate attempts to control victims prior to abuse or attack has had a significant bearing on the course of law enforcement investigations, criminal court proceedings, and victim service providers. DNA and toxicology evidence have become a highly influential piece of the crime puzzle. You will be introduced to the concepts of DNA profiling and analytical toxicology and their applications in forensic case work. Develop the necessary skills for analysing and interpreting the DNA and toxicology evidences and be introduced to the basic concepts of forensic anthropology. This learning will be through the study of the theory, hands-on practices relevant to real life scenarios as well as training on the forensic interpretation of the evidence.

