coolsosoco11

coolsosoco11's avatar

Birthday: 11/02

Contact

  • Add to Friends
  • Send Message
  • Trade Items

Equipped List

Interest Tags

Remind me to update my interests.

Wish List

 

About

My Aquarium

Your aquarium is undergoing maintenance!

Comments

View All Comments

DJcool4life Report | 01/24/2010 12:09 pm
DJcool4life
wats up man!
zombiekiller12 Report | 05/18/2009 2:58 pm
zombiekiller12
rtetfsdaf
zombiekiller12 Report | 05/18/2009 1:08 pm
zombiekiller12
zdfkjnhxzjkbzfxchjzbxcz
derick9021 Report | 05/18/2009 1:02 pm
derick9021
dude. 1+2=3
derick9021 Report | 05/18/2009 1:01 pm
derick9021
DUDE dud deudheudhuehdeugduegdyueduedueudeuduedueudeudueudeudueudeudueudueududeudueududuedueuduedueuduedueuduedueudeudieduduehduefduefduefdy7efdededieyd8eideudfeid.
DUDE! 1 + 2= 4
derick9021 Report | 05/18/2009 1:00 pm
derick9021
DDDDUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUDE!
hi
derick9021 Report | 05/18/2009 12:59 pm
derick9021
DUUUUUUUUUUUUDE!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
hi...
derick9021 Report | 05/17/2009 4:42 pm
derick9021
Hey, whats up!!! here's something i think you would really think was cool!
The quadratic reciprocity law can be formulated in terms of the Hilbert symbol (a,b)v where a and b are any two nonzero rational numbers and v runs over all the non-trivial absolute values of the rationals (the archimedean one and the p-adic absolute values for primes p). The Hilbert symbol (a,b)v is 1 or −1. It is defined to be 1 if and only if the equation ax2 + by2 = z2 has a solution in the completion of the rationals at v other than x = y = z = 0. The Hilbert reciprocity law states that (a,b)v, for fixed a and b and varying v, is 1 for all but finitely many v and the product of (a,b)v over all v is 1. (This formally resembles the residue theorem from complex analysis.)The proof of Hilbert reciprocity reduces to checking a few special cases, and the non-trivial cases turn out to be equivalent to the main law and the two supplementary laws of quadratic reciprocity for the Legendre symbol. There is no kind of reciprocity in the Hilbert reciprocity law; its name simply indicates the historical source of the result in quadratic reciprocity. Unlike quadratic reciprocity, which requires sign conditions (namely positivity of the primes involved) and a special treatment of the prime 2, the Hilbert reciprocity law treats all absolute values of the rationals on an equal footing. Therefore it is a more natural way of expressing quadratic reciprocity with a view towards generalization: the Hilbert reciprocity law extends with very few changes to all global fields and this extension can rightly be considered a generalization of quadratic reciprocity to all global fields.
melanie6574 Report | 05/17/2009 1:45 pm
melanie6574
abcdefghijklmnopqrstuvwxyz
pandagirl4 Report | 05/17/2009 10:33 am
pandagirl4
hello

Signature

 

Recent Visitors

Forums

Posts per Day: 0.00

Total Posts: 0

My Playlist

You currently have zero playlists!